Tower Cranes \& Foundations The Interface \& CIRIA C654

Stuart Marchand C.Eng. FICE FIStructE Director

Wentworth House Partnership

EXAMPLES OF TOWER CRANE FOUNDATION TYPES

Created and organised by
INTIFRNATINAL
AND SPECIALIZEDTRANSPORT
american cranes a transport
日CT

Rail mounted

Created and organised by
cranes
F-cser

Pad Base

Piled Base

Piled Base

Grillage Base

Grillage Base

SELECTION OF FOUNDATION TYPE

This will depend on:
The class of crane - Light, Medium or Heavy duty and

The ground conditions - Very soft clay to Rock and

The site constraints - open area or congested inner city

The Interface

Mechanical

Civil

‘Thou’ ($\mu \mathrm{m}$) 1/16 (mm)

EN 13001-02
Regular, Variable, \& Occasional Loads

EN1990

Permanent, QuasiPermanent, Variable, \& Accidental
Actions

Created and organised by
AND SPECIALIZED TRANSPORT

Foundation designs are currently carried out in accordance with CIRIA C654 Tower Crane Stability

This guide published in 2006 anticipated that the information from crane owners would in future be more detailed so as to align with Eurocodes

This is proving challenging due to the misalignment of the product design code with the general Eurocodes, and the different information provided by different manufacturers.

Typical Foundation Loads

In Operation			Out of Operation						Erection		
			Storm from rear			Storm from front					
$\begin{gathered} \mathrm{M} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { V } \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{V} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} V \\ (k N) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{V} \\ (\mathrm{kN}) \end{gathered}$
3343	65	939	2836	129	910	4270	87	912	3488	29	581

Draft revision to C654 treatment of the above loads

The Self Weight of the tower crane and of the foundation is taken as a Permanent Action

All other loads are taken as Variable Actions

Created and organised by

Design of a simple pad base foundation

There are 3 main aspects to the design
a) Stability - the EQU limit state
b) Geotechnical Capacity - the GEO limit states
c) Structural Design - STR limit state

Created and organised by
cranes

Example Design Method

Provisional－Still Under Development

Gravity Crane Base

Created and organised by

In order to illustrate the above we will use loading data from the Liebherr 280 EC-H 12 Litronic at a hook height of 47.9 m with a 75 m jib

Ground conditions will be taken as a cohesive material with shear strength of 200 $\mathrm{kN} / \mathrm{m}^{2}$

The EQU limit state

Erection Case

Wt of base $=6.5 \mathrm{~m} \times 6.5 \mathrm{~m} \times 1.4 \mathrm{~m} \times 24 \mathrm{kN} / \mathrm{m}^{3}=1420 \mathrm{kN}$
Wt of crane =

$$
\text { Total }=2001 \mathrm{kN}
$$

Stabilising Moment $=2001 \mathrm{kN} \times 6.5 \mathrm{~m} / 2 \times 0.9 \mathrm{y}=5852 \mathrm{kNm}$

Destabilising Moment $=(3488+29 \mathrm{kN} \times 1.4 \mathrm{~m}) \times 1.5 \mathrm{y}=5292 \mathrm{kNm}$

> Stabilising > Destabilising - OK

Storm Case

Wt of base $=6.5 \mathrm{~m} \times 6.5 \mathrm{~m} \times 1.4 \mathrm{~m} \times 24 \mathrm{kN} / \mathrm{m}^{3}=1420 \mathrm{kN}$
Wt of crane =

Destabilising Moment $=(4270+87 \mathrm{kN} \times 1.4 \mathrm{~m}) \times 1.0 \mathrm{y}=4391 \mathrm{kNm}$

> Stabilising > Destabilising - OK

The GEO limit states

There are 2 Ultimate GEO limit states to check, one with a material factor of 1.0 on the soil properties, and the other with a capacity reduction factor - in this case 1/1.4 on the soil strength.

The maximum soil pressures occur with the jib at an angle to the base. Part of the base may not be in contact with the ground.

Contact area

Note that the ground capacity varies with the loaded shape

Created and organised by
CNABA AS
AND SPECIALIZED TRANSPORT
american cranes a transport
(

The pressure is calculated based on Meyerhof for an equivalent uniform pressure distribution over a reduced rectangular area

Created and organised by
C O C
AND SPECIALIZED TRANSPORT
american cranes \& transport
FCT

GEO limit state ULS Combination 1

Bearing capacity - there are 2 cases to check
Factor the variable load (moment) by 1.5

Calculate the area of ground under load for a variety of jib angles for each case.

Calculate the bearing pressure on the ground
Calculate the bearing capacity of the ground for each pressure and loaded area

Check that Capacity > Applied Load

GEO ULS Combination 1 Case 1

Erection

Stabilising Action $=2001 \mathrm{kN} \mathrm{x1.35} \mathrm{y}=2701 \mathrm{kN}$

Destabilising Moment $=(3488+29 \mathrm{kN} \times 1.4 \mathrm{~m}) \times 1.5 \mathrm{Y}=5292 \mathrm{kNm}$
Eccentricity $=5292 \mathrm{kNm} / 2701 \mathrm{kN}=1.95 \mathrm{~m}$
Width of soil loaded $=6.5 \mathrm{~m}-2 \times 1.95 \mathrm{~m}=2.6 \mathrm{~m}$
Soil Capacity $=A^{\prime}\left(c_{u d} N_{c} b_{c} s_{c} i_{c}+q\right)$
Soil Capacity $=9718 \mathrm{kN}$
9718 kN > 2701 OK

GEO ULS Combination 1 Case 2

Erection

Stabilising Action $=2001 \mathrm{kN} \times 1.0 \mathrm{y}=2001 \mathrm{kN}$

Destabilising Moment $=(3488+29 \mathrm{kN} \times 1.4 \mathrm{~m}) \times 1.5 \mathrm{Y}=5292 \mathrm{kNm}$
Eccentricity $=5292 \mathrm{kNm} / 2001 \mathrm{kN}=2.64 \mathrm{~m}$
Width of soil loaded $=6.5 m-2 \times 2.64 m=1.22 m$
Soil Capacity $=A^{\prime}\left(c_{u d} N_{c} b_{c} s_{c} i_{c}+q^{\prime}\right)$
Soil Capacity $=4350 \mathrm{kN}$
4350 kN > 2001 OK

Sliding

The horizontal load is a variable load and hence factored by 1.5

The soil resistance is unfactored, but the friction factor between the concrete and soil needs to be incorporated. EC7 does not give any guidance, but BS8002 suggests 0.75

Horizontal Action $=29 \times 1.5 \mathrm{y}=43.5 \mathrm{kN}$
Resistance $=100 \mathrm{kN} / \mathrm{m}^{2} \times 1.22 \mathrm{~m} \times 6.5 \mathrm{~m} * 1.0 \mathrm{y} * 0.75=594 \mathrm{kN}$

GEO limit state ULS Combination 2

Bearing Capacity

Factor the variable load (moment) by 1.3
Factor the permanent load (Base and Crane wt.) by 1.0
Calculate the area of ground under load for a variety of jib angles for each case.

Calculate the bearing capacity of the ground for each pressure and loaded area

Compare this with the failure capacity of the ground with strength reduced by 1.4

GEO ULS Combination 2

Erection

Stabilising Action $=2001 \mathrm{kN} x 1.0 \mathrm{y}=2001 \mathrm{kN}$

Destabilising Moment $=(3488+29 \mathrm{kN} \times 1.4 \mathrm{~m}) \times 1.3 \mathrm{y}=4587 \mathrm{kNm}$
Eccentricity $=4587 \mathrm{kNm} / 2001 \mathrm{kN}=2.29 \mathrm{~m}$
Width of soil loaded $=6.5 \mathrm{~m}-2 \times 2.29 \mathrm{~m}=1.92 \mathrm{~m}$
Soil Capacity $=A^{\prime}\left(c_{u d} N_{c} b_{c} s_{c} i_{c}+q^{\prime}\right)$
Soil Capacity $=8221 \mathrm{kN}$

8221 kN > 2001kN OK

Sliding

The horizontal load is a variable load and hence factored by 1.3

The soil resistance is factored by $1 / 1.4$, and the friction factor between the concrete and soil is incorporated.

Horizontal Action $=29 \times 1.3 \mathrm{y}=37.7 \mathrm{kN}$
Resistance $=100 \mathrm{kN} / \mathrm{m}^{2} \times 1.92 \mathrm{~m} \times 6.5 \mathrm{~m} * 0.75 / 1.4 \mathrm{y}=668 \mathrm{kN}$

GEO limit state SLS

Calculate the settlement of the ground under SLS loads and confirm this is acceptable with the Tower crane Manufacturer

OR

Based on UK custom and practice, calculate the bearing pressure on the ground under SLS loading, and if this is $<1 / 3$ of the failure capacity, deem that settlements will be acceptable

STR limit state

Design with jib orthogonal
Take the worst case from the GEO analysis

Calculate the maximum moment which is at the point of zero shear

Created and organised by
american cranes atransport

GEO ULS Combination 1 Case 2

Design the reinforcement
The base projects $2 m$ beyond the tower crane leg (point of zero shear)

Ground Pressure $=2001 \mathrm{kN} / 1.22 \mathrm{~m} / 6.5 \mathrm{~m}=252 \mathrm{kPa}$
Design moment = 252 kPa * $1.22 \mathrm{~m} *(3.25 \mathrm{~m}-1.22 \mathrm{~m} / 2)-33.6 \mathrm{kPa} *(2.25 \mathrm{~m})^{2} / 2=$ 520 kNm/m

Using 25/30 concrete $\mathrm{f}_{\mathrm{ck}}=25 \mathrm{~N} / \mathrm{mm}^{2}$
Effective depth $=1.4 \mathrm{~m}-50 \mathrm{~mm}$ cover -40 mm bar allowance $=$ 1310 mm
$\mathrm{K}=\mathrm{M}_{\mathrm{ed}} /\left(\mathrm{bd}^{2} \mathrm{f}_{\mathrm{ck}}\right)=520 \times 10^{6} / 1000 / 1310^{2} / 25=0.012$
Lever arm $Z=d(0.5+\operatorname{Sqrt}(0.25-K / 0.9))$ but $<0.95 \times d$
$Z=0.95 \times 1310=1245 \mathrm{~mm}$
Area of reinforcement required
$A_{s}=M / f_{y d} z=520 \mathrm{kNm} /(500 / 1.15 \mathrm{y} \times 1245 \mathrm{~mm})=960 \mathrm{~mm}^{2} / \mathrm{m}$

Check minimum reinforcement $=0.26 \times\left(f_{c t m} / f_{y k}\right) b_{t} d>0.0013 b_{t} d$ where $\mathrm{f}_{\mathrm{ctm}}=0.30 \mathrm{f}_{\mathrm{ck}} 0.666=0.30 \times 25^{0.666}=2.56 \mathrm{Mpa}$

Minimum reinforcement $=0.26 \times(2.56 / 500) \times 1000 \times 1310 \geq$ $0.0013 \times 1000 \times 1310$
$1744 \mathrm{~mm}^{2} / \mathrm{m}$ but $>1703 \mathrm{~mm}^{2} / \mathrm{m}$
Hence minimum reinforcement governs - $1744>960 \mathrm{~mm}^{2} / \mathrm{m}$

Check Shear

Design Shear at d from support
252 kPa * $0.94 \mathrm{~m}-33.6 \mathrm{kPa} * 0.94 \mathrm{~m}=205 \mathrm{kN} / \mathrm{m}$ Shear stress $\mathrm{v}_{\mathrm{Ed}}=205 \mathrm{kN} / \mathrm{m} / 1310 \mathrm{~mm} / 1 \mathrm{~m}=0.16 \mathrm{kPa}$
$v_{\mathrm{Rd}, \mathrm{c}}=\left(0.18 / \mathrm{y}_{\mathrm{c}}\right) \mathrm{k}\left(100 \mathrm{rf}_{\mathrm{ck}}\right)^{0.333} \geq 0.035 \mathrm{k}^{1.5 f_{\mathrm{ck}}}{ }^{0.5}$
where

$$
Y_{c}=1.5
$$

$$
k=1+(200 / d)^{0.5} \leq 2.0: k=1+(200 / 1310)^{0.5}=1.39
$$

$$
r_{1}=A_{s l} / b d=1744 /(1000 \times 1310)=0.00133
$$

$$
\mathrm{f}_{\mathrm{ck}}=25 \mathrm{MPa}
$$

$$
\mathrm{V}_{\mathrm{Rd}, \mathrm{C}}=(0.18 / 1.5) \times 1.39 \times(100 \times 0.00133 \times 25)^{0.333} \geq 0.035 \times
$$

$$
1.38^{1.5} \times 25^{0.5}
$$

$=0.284>0.249 \geq 0.16 \mathrm{MPa}$

Pull out/push through of the anchors
The CIRIA guide states "If the manufacturer's recommendations regarding shear reinforcement are followed, punching and pull out shear should be satisfactory"

I have yet to see any manufacturer's recommendations regarding shear reinforcement, apart from sketches indicating where it should go.

Foundation Anchors

This is fundamentally a punching shear issue
With some types of anchor it is clear where the failure cone will occur

With others it is less clear, but Liebherr now suggest ${ }^{\text {t }}$

Created and organised by
AND SPECIALIZEDTRANSPORT

Discussion Points

Storm from front condition - should this be a general design case or a special case?

Why can we not have loadings which are Eurocode compliant?

What load factors are appropriate to the erection case?
Are current expendable anchor designs sustainable and what can be done to improve them?

